O PyTorch

深度学习: GAN

主讲人:龙良曲

"What I cannot create, I do not understand."

-Richard Feynman

https://blog.openai.com/generative-models/

14 sigma = cat(3,[2 0;0 .5],[1 0;0 1]) 15 p = ones(1,2)/2 16 gm = gmdistribution(mu,sigma,p)

13

mu = [1 2; -3 -5]

Contour lines of pdf and Simulated Data Contour lines of pdf 10 10 8 8 6 4 2 > 0 \geq 0 -2 -2 -4 -6 -8 -8 -10 -10 8 10 6 8 10 -10 -2 2 6 -10 -8 -8 -6 4 -2 х х

https://www.mathworks.com/help/stats/simulate-data-from-a-gaussian-mixture-model.html

What does p(x) looks like?

http://www.pymvpa.org/examples/mdp_mnist.html

emm, how to learn p(x)

• Let's consider the case of growth up of a painter

When firstly began to paint

After learned by 5 years

After learned by 10 years

Finally Nash Equilibrium

Put it down

• Painter or Generator:

https://towardsdatascience.com/generative-adversarial-networks-explained-34472718707a

How to train?

 $\min_{G} \max_{D} L(D, G) = \mathbb{E}_{x \sim p_r(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$ $= \mathbb{E}_{x \sim p_r(x)} [\log D(x)] + \mathbb{E}_{x \sim p_g(x)} [\log(1 - D(x))]$

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

Done!

Figure 1: Class-conditional samples generated by our model.

c)

https://medium.com/syncedreview/biggan-a-new-state-of-the-art-in-image-synthesiscf2ec5694024

See more realistic samples

与我共享 > BigGAN ICLR2019 Sample Sheets > 512x512 - 🟩

名称 个

FID9.34_IS202.6_TRUNC1.240

FID10.9_IS154.9_NOTRUNC

FID10.9_IS241.4_TRUNC0.760

FID24.4_IS274.5_TRUNC0.08

https://drive.google.com/drive/folders/1IWC6XEPD0LT5KUnPXeve_kWeY-FxH002

Having Fun

- https://reiinakano.github.io/gan-playground/
- https://affinelayer.com/pixsrv/
- https://www.youtube.com/watch?v=9reHvktowLY&feature=youtu.be
- https://github.com/ajbrock/Neural-Photo-Editor
- https://github.com/nashory/gans-awesome-applications

The End ?

Never end

- Q1. Where will D converge, given fixed G
- Q2. Where will G converge, after optimal D

 $\min_{G} \max_{D} L(D, G) = \mathbb{E}_{x \sim p_r(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$ $= \mathbb{E}_{x \sim p_r(x)} [\log D(x)] + \mathbb{E}_{x \sim p_g(x)} [\log(1 - D(x))]$

Intuition

Q1. Where will D go (fixed G)

Proposition 1. For G fixed, the optimal discriminator D is

$$D_G^*(\boldsymbol{x}) = rac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the quantity V(G, D)

$$V(G, D) = \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) d\boldsymbol{x} + \int_{\boldsymbol{z}} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) d\boldsymbol{z}$$
$$= \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_{g}(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) d\boldsymbol{x}$$
(3)

Thus, set
$$\frac{df(\tilde{x})}{d\tilde{x}} = 0$$
, we get the best value of the discriminator:
 $D^*(x) = \tilde{x}^* = \frac{A}{A+B} = \frac{p_r(x)}{p_r(x)+p_g(x)} \in [0, 1]$

$$f(\tilde{x}) = A \log \tilde{x} + B \log(1 - \tilde{x})$$

$$\frac{f(\tilde{x})}{d\tilde{x}} = A \frac{1}{\ln 10} \frac{1}{\tilde{x}} - B \frac{1}{\ln 10} \frac{1}{1 - \tilde{x}}$$

$$= \frac{1}{\ln 10} \left(\frac{A}{\tilde{x}} - \frac{B}{1 - \tilde{x}}\right)$$

$$= \frac{1}{\ln 10} \frac{A - (A + B)\tilde{x}}{\tilde{x}(1 - \tilde{x})}$$

$$= \frac{1}{\ln 10} \frac{\chi(1 - \chi)}{\chi(1 - \tilde{x})}$$

KL Divergence V.S. JS Divergence

$$D_{KL}(p||q) = \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$$

$$D_{JS}(p||q) = \frac{1}{2} D_{KL}(p||\frac{p+q}{2}) + \frac{1}{2} D_{KL}(q||\frac{p+q}{2})$$

$$D_{JS}(p_{r}||p_{g}) = \frac{1}{2}D_{KL}(p_{r}||\frac{p_{r}+p_{g}}{2}) + \frac{1}{2}D_{KL}(p_{g}||\frac{p_{r}+p_{g}}{2})$$

$$= \frac{1}{2}\left(\log 2 + \int_{x} p_{r}(x)\log\frac{p_{r}(x)}{p_{r}+p_{g}(x)}dx\right) + \frac{1}{2}\left(\log 2 + \int_{x} p_{g}(x)\log\frac{p_{g}(x)}{p_{r}+p_{g}(x)}dx\right)$$

$$= \frac{1}{2}\left(\log 4 + L(G, D^{*})\right)$$

$$p_{r} = p_{g}$$

0

 $L(G, D^*) = 2D_{JS}(p_r || p_g) - 2\log 2$

A~Z GAN

https://github.com/hindupuravinash/the-gan-zoo/blob/master/cumulative gans.jpg

DCGAN

https://blog.openai.com/generative-models/

Transposed Convolution

https://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers

VAE V.S. DCGAN

The Last thing?

Training Stability

Why?

- In most cases, P_G and P_{data} are not overlapped.
- 1. The nature of data

Both P_{data} and P_G are low-dim manifold in high-dim space. The overlap can be ignored.

• 2. Sampling

Even though P_{data} and P_{G} have overlap. If you do not have enough sampling

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2018/Lecture/WGAN%20(v2).pdf

$$D_{KL}(p||q) = \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$$
$$D_{JS}(p||q) = \frac{1}{2} D_{KL}(p||\frac{p+q}{2}) + \frac{1}{2} D_{KL}(q||\frac{p+q}{2})$$

Toy example

 $egin{aligned} &orall (x,y)\in P, x=0 ext{ and } y\sim U(0,1) \ &orall (x,y)\in Q, x= heta, 0\leq heta\leq 1 ext{ and } y\sim U(0,1) \end{aligned}$

When
$$\theta \neq 0$$
:

$$D_{KL}(P||Q) = \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty$$

$$D_{KL}(Q||P) = \sum_{x=\theta, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty$$

$$D_{JS}(P,Q) = \frac{1}{2} (\sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{1/2} + \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{1/2}) = \log 2$$

$$W(P,Q) = |\theta|$$

But when heta=0, two distributions are fully overlapped:

$$D_{KL}(P||Q) = D_{KL}(Q||P) = D_{JS}(P,Q) = 0$$

 $W(P,Q) = 0 = |\theta|$

Toy example

Gradient Vanishing

Training Progress Invisible

HowTo

The Least Cost among plans

There many possible "moving plans".

A "moving plan" is a matrix The value of the element is the amount of earth from one position to another.

Average distance of a plan γ :

$$B(\gamma) = \sum_{x_p, x_q} \gamma(x_p, x_q) \|x_p - x_q\|$$

Earth Mover's Distance:

 $W(P,Q) = \min_{\gamma \in \Pi} B(\gamma)$

The best plan

How to compute Wasserstein Distance

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|] ,$$

$$\left[f(x^{(i)}) - f(G(z^{(i)}))\right]$$

Discriminator/Critic

Generator

$$\begin{aligned} \mathbf{GAN} & \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right] & \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m -\log \left(D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \\ \mathbf{WGAN} & \nabla_w \frac{1}{m} \sum_{i=1}^m \left[f\left(\boldsymbol{x}^{(i)} \right) - f\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right] & \nabla_\theta \frac{1}{m} \sum_{i=1}^m -f\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \end{aligned}$$

 $|f(x_1)-f(x_2)|\leq |x_1-x_2|.$ 1-Lipschitz function

WGAN

Weight Clipping [Martin Arjovsky, et al., arXiv, 2017] Force the parameters w between c and -c After parameter update, if w > c, w = c; if w < -c, w = -c

Sort of Regularization

8 Gaussians 25 Gaussians

Swiss Roll

where \hat{x} sampled from \tilde{x} and x with t uniformly sampled between 0 and 1 $\hat{x} = t \tilde{x} + (1 - t) x$ with $0 \le t \le 1$

More stable

Unsupervised		Supervised	
Method	Score	Method	Score
ALI [8] (in [27])	$5.34 \pm .05$	SteinGAN [26]	6.35
BEGAN [4]	5.62	DCGAN (with labels, in [26])	6.58
DCGAN [22] (in [11])	$6.16\pm.07$	Improved GAN [23]	$8.09\pm.07$
Improved GAN (-L+HA) [23]	$6.86 \pm .06$	AC-GAN [20]	$8.25\pm.07$
EGAN-Ent-VI ^[7]	$7.07 \pm .10$	SGAN-no-joint [11]	$8.37 \pm .08$
DFM [27]	$7.72\pm.13$	WGAN-GP ResNet (ours)	$8.42 \pm .10$
WGAN-GP ResNet (ours)	$7.86 \pm .07$	SGAN [11]	$8.59 \pm .12$

Training Progress Indicator

Thank You.